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ABSTRACT

Extracting knowledge from Wikipedia has attracted much attention in recent ten years. One of the
most valuable kinds of knowledge is type information, which refers to the axioms stating that an
instance is of a certain type. Current approaches for inferring the types of instances from Wikipedia
mainly rely on some language-specific rules. Since these rules cannot catch the semantic associations
between instances and classes (i.e. candidate types), it may lead to mistakes and omissions in the
process of type inference. The authors propose a new approach leveraging attributes to perform
language-independent type inference of the instances from Wikipedia. The proposed approach is
applied to the whole English and Chinese Wikipedia, which results in the first version of MulType
(Multilingual Type Information), a knowledge base describing the types of instances from multilingual
Wikipedia. Experimental results show that not only the proposed approach outperforms the state-of-
the-art comparison methods, but also MulType contains lots of new and high-quality type information.
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1. INTRODUCTION

Extracting knowledge from Wikipedia has attracted much attention in recent ten years. So far, different
kinds of knowledge have been extracted and published as linked open dataset. One of the most
valuable kinds of knowledge is type information, which refers to the axioms stating that an instance
is of a certain type. These axioms can be denoted as triples, each of which is composed of a TypeOf
relation linking from a class to an instance, e.g. “President of the United States” TypeOf “Barack
Obama” and “Country in Europe” TypeOf “Italy”. Type information can benefit many applications
in different research fields, such as entity search (Ding et al., 2015; Tonon et al., 2013), question
answering (Kalyanpur et al., 2011) and product recommendation (Hepp, 2008).

In Wikipedia, we treat a category and an article respectively as a class' and an instance. Thus, it
seems that we can obtain the type information directly by transforming the user-generated subsumption
relation from a category to an article to the TypeOf relation from a class to an instance. However,
this user-generated subsumption relation essentially represents a TopicOf relation, which only means
that the category is seen as a topic of the article, e.g. category “Obama Family” TopicOf article



Figure 1. Some categories (i.e. classes) with plural headword nouns of the article (i.e. instance) “Australian cricket team in
England in 1948”
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“Barack Obama”. Such TopicOf relations are obviously different from the TypeOf relations defined
in knowledge bases (KBs).

In order to overcome this problem, some works (De Melo & Weikum, 2010; Suchanek, Kasneci,
& Weikum, 2008) try to discover the correct TypeOf relations among the user-generated TopicOf
relations. The heuristic rules applied in the above works are similar. The central idea is that “the
TopicOfrelation from a category to an article can be transformed to the TypeOf relation from a class to
an instance with high accuracy, when the headword noun of the given category is plural or countable”
Though these heuristic rules have been proved effective, they still suffer from the following problems:

e These rules are language dependent, thus cannot be used in some languages (e.g. Chinese and
Japanese), in which nouns have no explicit singular or plural forms.

e These rules cannot catch the semantic associations between instances and classes (i.e. candidate
types), which may lead to mistakes and omissions in the process of type inference. For example,
some classes with plural headword nouns may be incorrect types of instances (see Figure 1).
Besides, all the classes with singular headword nouns are ignored, but many of them are correct
types (see Figure 2).

To solve the above two problems, we introduce a language-independent feature, i.e. attributes, to
help build the semantic associations between instances and classes, and infer the types of the instances
from multilingual Wikipedia. Intuitively, given attributes “actors, release date, director” of a certain
instance, people may infer that the type of this instance is “Movie.” However, given attributes “name,
foreign name”, people cannot infer the type of the instance because too many classes have the attribute
“name” or “foreign name.” Hence, we propose an attribute-driven type inference assumption: “in
Wikipedia, if an instance contains representative attributes of one of its classes (e.g. “release date”
of “Movie”), there may exist a TypeOf relation from the class to the instance with high probability”
In this paper, we study how to utilize attributes to perform language-independent type inference. It
poses three main challenges as follows:

e Data. At first, we need to get the attributes of instances and those of classes. Since the attributes
of instances are explicitly defined in infoboxes (see Figure 3(a)) in Wikipedia, we can directly
extract them from infoboxes in different languages. However, the question is: where can we
extract the attributes of classes?

e Linguistics. To use attributes to help infer the types of the instances from multilingual Wikipedia,
we need to get the attributes of classes in different languages. Can we extract the attributes of
classes without language-dependent features?



Figure 2. Some categories (i.e. classes) with singular headword nouns of the article (i.e. instance) “MySQL”
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e Model. After obtaining the attributes of instances and those of classes, we can easily associate
instances with their corresponding classes using shared attributes. However, the question is:
how to define a model based on the above attribute-driven type inference assumption, to infer
whether there exists a TypeOf relation from one class to the given instance?

To handle these challenges, after extracting the attributes of instances from infoboxes, we present
a general algorithm incorporating several language-independent rules to get the attributes of classes.
Then, we propose a random graph walk model to compute the probability of a TypeOf relation existing
between a class and the given instance. Finally, considering that the attributes of many instances are
still incomplete or missing, for each instance, we apply a method to get its most similar instances,
which already have attributes and are used to further improve the proposed random graph walk model.

Since all parts of the proposed approach do not rely on any linguistic feature, it can be applied
in different languages, and here we evaluate our approach in two important languages: English and
Chinese, which are top two most spoken languages? (including native and non-native speakers) all over
the world. English is also the most widely used language in international activities, so it is valuable
to mine English type information. Since Chinese is a representative language in which nouns have
no explicit singular or plural forms, testing our approach in Chinese can verify whether it is able to
solve the language-dependent problem of the rule-based approach. After applying our approach on
the whole English and Chinese Wikipedia, we get the first version of MulType (Multilingual Type
Information), which is a knowledge base (KB) describing the types of instances from multilingual
Wikipedia. Compared with DBpedia (Bizer et al., 2009; Lehmann et al., 2015), Yago (Suchanek,
Kasneci, & Weikum, 2008; Mahdisoltani, Biega, & Suchanek, 2015) and LHD (Kliegr, 2015),
MulType not only first contributes a large scale of Chinese type information, but also contains lots
of new English type information.

In summary, the main contributions of this work are listed as follows:

e  We propose a language-independent approach to type inference of the instances in different
languages from Wikipedia, which facilitates multilingual type information mining.

e  We publish the obtained type information (i.e. MulType) as the open data on the Web and provide
three different ways to access the data, including the downloading of the whole data, lookup
service and SPARQL endpoint.

e  We carry out a comprehensive set of experiments to evaluate our approach. Experimental results
show that the proposed approach not only harvests the large-scale, high-quality English and
Chinese type information, but also significantly outperforms the designed comparison methods
in terms of precision, recall and F1-score.



Figure 3. An example of: (a) infobox; (b) infobox template
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The rest of this paper is organized as follows. Section 2 outlines the related work. Section 3
introduces our approach, including the details of attribute extraction and type information generation.
Section 4 presents the experimental results. Section 5 shows the Web access to MulType. The last
section concludes this paper and describes our future work.



2. RELATED WORK

In this section, we review the related work on type inference in knowledge base (KB) construction,
type inference in KB completion, type inference of named entities and class attribute extraction.

2.1. Type Inference in KB Construction

Type inference in KB construction aims to infer the types of instances from scratch. Auer et al. (Auer
& Lehmann, 2007) proposed an approach to infer instance types using the local names of infobox
templates in Wikipedia. Gangemi et al. (Gangemi et al., 2012) proposed an approach to extract type
information from the abstracts of articles in Wikipedia leveraging a set of lexico-syntactic patterns,
disambiguate the identified types with WordNet, and align these types to different ontologies. Similarly,
Kliegr (Kliegr, 2015) also utilized Hearst patterns (Hearst, 1992) to extract types from the first
sentences of articles in Wikipedia, and the types were disambiguated to DBpedia classes. Our paper
is different from them, because we try to infer the types of instances from the existing classes (i.e.
categories) in Wikipedia, not from the local names of infobox templates or the abstracts of articles.

The most relevant works (De Melo & Weikum, 2010; Suchanek, Kasneci, & Weikum, 2008)
used heuristic rules to perform language-dependent type inference from the classes in Wikipedia.
Here, we focus on language-independent type inference of the instances from multilingual Wikipedia.
We make a detailed comparison between our approach and the rule-based approach in experiments.

2.2. Type Inference in KB Completion

There also exist some works on complementing the missing type information in KBs using the existing
types of instances. Nuzzolese et al. (Nuzzolese et al., 2012) used two techniques respectively based
on induction and abduction, exploiting the link structure in Wikipedia to complete type information
of DBpedia with the existing instance types. Paulheim and Bizer (Paulheim & Bizer, 2013; Paulheim
& Bizer, 2014) proposed a heuristic link-based type inference mechanism SDType, which can be
applied to any RDF KB. Kliegr and Zamazal (Kliegr & Zamazal, 2016) introduced a text-mining
based approach for inferring instance types in KBs. This approach first maps classes between
different KBs using the Statistic Type Inference (STI) algorithm (Kliegr & Zamazal, 2014), which is
a generic co-occurrence-based algorithm calculating the common instances of classes to support such
mappings. Then, it utilizes a hierarchy of Support Vector Machines classifiers to infer new types of
the instances in given KBs. Melo et al. (Melo, Volker, & Paulheim, 2017) utilized hierarchical multi-
label classification to perform type completion in RDF KBs. Their works are different from ours in
that we infer the types of instances without leveraging any existing types of instances in current KBs.

2.3. Type Inference of Named Entities

Type inference of named entities is classifying identified entities in the text into a set of predefined
types. Many approaches have been proposed to solve this problem. Both the FIGER system (Lin,
Mausam, & Etzioni, 2012) and PEARL system (Nakashole, Tylenda, & Weikum, 2013) rely on
relational patterns to mine type information with the types in the given KB. Another kind of approach
(Fleischman & Hovy, 2002; Rahman & Ng, 2010; Ling & Weld, 2012; Yosef et al., 2012; Yosef et
al., 2013) is to design different features and different classifiers to assign the predefined types to
named entities. FINET (Del Corro et al., 2015) generates candidate types using a sequence of multiple
extractors and selects the most appropriate types using the algorithm of word-sense disambiguation.
Compared with previous approaches, FINET is less reliant on a specific KB or training data. Recently,
embedding-based approaches (Ren et al., 2016; Ma, Cambria, & Gao, 2016; Abhishek, Anand, &
Awekar, 2017) are popular and they aim to embed entities and types into the same vector space and
design different score functions to predict whether there is a TypeOf relation between the given type
and entity.



The input of the systems given in these works is a piece of text, which may contain named entities.
These systems will identify such entities in the text and infer their types. Different from them, our
work does not infer types of the entities in a given text. The input of our work is an instance and
the classes in its corresponding Wikipedia page (Figure 1 and Figure 2 give two examples), and the
output is the correct types (from such classes) of the given instance.

2.4. Class Attribute Extraction

Acquiring attributes of classes without language-dependent features is one of the main challenges for
type inference in our paper. Pasca et al. (Pasca, 2007; Pasca & Van Durme, 2007; Pasca & Van Durme,
2008) proposed different methods to design and mine extraction patterns to get the attributes of classes
from Web scale documents or query logs. Lee et al. (Lee et al., 2013) first presented different ways to
extract the attributes of instances and attributes of classes from documents, query logs and KBs, and
then further mapped the attributes of instances into a broad class space. Since Web scale documents
or query logs cannot be easily obtained and almost all the seed patterns of extraction are language-
specific, we cannot utilize these methods to extract attributes of classes from multilingual Wikipedia.

3. APPROACH

In this section, we introduce our approach for language-independent type inference in Wikipedia. The
whole workflow is given in Figure 4. The input is all instances (i.e. articles) with their corresponding
classes (i.e. categories) in Wikipedia. Then, the part of attribute extraction aims to extract the attributes
of instances from infoboxes and those of classes with a general algorithm incorporating several
language-independent rules. Subsequently, the part of type information generation first acquires
each given instance’s most similar instances that have attributes using an integrated instance similar
score, and then performs type inference with a random graph walk model. Finally, the output of our
approach is a large-scale KB of type information called MulType.

3.1. Attribute Extraction

Since the attributes of instances can be easily extracted from the infoboxes in their corresponding
Wikipedia pages, we discuss how to extract the attributes of classes from multilingual Wikipedia
without using language-specific features in this section.

In Wikipedia, infobox templates (Figure 3(b)) gives an example of infobox template containing
the attributes of class “school’”’) are used to describe the characteristics of classes, so we treat infobox
templates as one of the sources for extracting attributes of classes. Thus, we define an Infobox Template
based Extraction Rule (IT-ER) as follows:

Definition 1: Infobox Template based Extraction Rule (IT-ER). Given an infobox template it and a
class c, the local names of it and c are respectively denoted as n(it) and n(c). All the attributes
of it can be propagated to c if

o n(it) and n(c) are the same (ignoring case and the difference in singular and plural forms
for some languages),

o or “Category:n(it)”’can redirect to c,

o orn(it) can redirect to n(c) or n(c) can redirect to n(it).

For example, infobox template “Template:Infobox islands” and class “Category:Islands”
have the same local name “islands”. In addition, it is obvious to find that the singular forms of
“n(Category:Countries)” (i.e. “Country”) and “n(Template:Infobox country)” (i.e. “country”)
are the same when ignoring case. Besides, if we submit the query “Category:n(Template:Infobox
university)” to Wikipedia, it can be redirected to “Category:Universities and colleges”. Moreover,



Figure 4. The workflow of our proposed approach
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“n(Category:States of the United States)” can redirect to “n(Template:Infobox U.S. state)”. Since
the infobox templates are summarized by the wisdom of crowds, we argue that the attributes in any
infobox template are correct and complete. Hence, we will not add new attributes to the class with
attributes extracted using IT-ER.

Inspired by the inheritance in object-oriented programming (Meyer, 1988) that one class can
inherit all the attributes of its super-class (e.g. class “Manager” can inherit the attribute “gender” from
its super-class “Person’), we try to apply this idea to extract the attributes of classes using the class
hierarchy (i.e. category system) of Wikipedia. The inheritance is reasonable when there exists a strict
isA relation between classes. Thus, we first collect sets of isA relations between classes from open
knowledge bases, including DBpedia, Yago, BabelNet (Navigli & Ponzetto, 2012), WikiTaxonomy
(Ponzetto & Strube, 2007; Ponzetto & Strube, 2008) and Zhishi.schema (Wang et al., 2014; Wu,
Wang, & Qi, 2014). Each set corresponds to one language. Then, we utilize these sets of isA relations
to refine the class hierarchies of different languages, i.e. removing the edges between the classes
in the hierarchies when we cannot find an isA relation between them. As a result, each language
corresponds to a refined class hierarchy. Based on such refined class hierarchies, we define a Top-
Down Hierarchy-based Extraction Rule (TDH-ER) as follows:

Definition 2: Top-Down Hierarchy-based Extraction Rule (TDH-ER). If a class ¢ has no attribute
extracted from infobox templates, and it has super-classes with attributes, then all the attributes
of its super-classes should be inherited by c.

Since the authors of the work (Dowty, Wall, & Peters, 1981) propose that a class is traditionally a
placeholder for a set of instances sharing similar attributes (properties), some subsequent works (Pasca
& Van Durme, 2007; Lee et al., 2013; Stojanovic, 2004) leverage this idea to extract the attributes
of classes from their corresponding instances or sub-classes. Here, we extend this idea to extract the
attributes of classes in the refined class hierarchies of Wikipedia. A Bottom-Up Hierarchy-based
Extraction Rule (BUH-ER) based on the idea of majority voting is defined as follows:

Definition 3: Bottom-Up Hierarchy-based Extraction Rule (BUH-ER). If a class c¢ has no attribute
extracted from infobox templates, and it has hyponyms (include instances and sub-classes) with
attributes, then the attributes can be propagated to ¢ when they are shared by more than half
of these hyponyms.



To utilize the proposed language-independent rules together, we present a general iterative
algorithm (i.e. Algorithm 1 given in Figure 5) for extracting the attributes of classes in multilingual
Wikipedia. In Algorithm 1, given one language L, we first input its corresponding refined class
hierarchy CH* = (C", R*) and a 2-tuple TUP* = (C*, A"), where C" is the set of all classes in the refined
class hierarchy, R” is the set of isA relations (i.e. directed edges) between the classes in C%, AL represents
sets of attributes corresponding to the classes in C*, and each set in A is initialized as & . Subsequently,
we apply IT-ER to each class in C* (line 1). To use TDH-ER, we need to handle the classes in CH*
from the root node to leaf nodes. Conversely, to use BUH-ER, we should deal with the classes in
CH" from leaf nodes to the root node. Therefore, we initialize three queues (a queue is a First-In-
First-Out data structure): Queue , Queue, and Queue as & (line 2), then sort the classes in C* by
their maximum depths in CH" (in ascending or descending order) (line 3), and put each sorted class
into Queue,, and Queue, in ascending order and descending order, respectively (line 4-5). In top-
down class attribute extraction with TDH-ER, we only need to set the variable Queue equal to Queue, ,
and handle the classes in Queue in order (line 7-10). Similarly, in bottom-up class attribute extraction
with BUH-ER, we set the variable Queue equal to the Queue, , and handle the classes in Queue in
order (line 13-16). We iteratively perform top-down class attribute extraction and bottom-up class
attribute extraction over CH" until convergence (i.e. TUP" stops changing (line 11-12) and (line 17-
18)). Note that although there exist some noise relations (i.e. TopicOf relations) from classes to
instances, the quality of extraction can still be guaranteed because BUH-ER is applied after IT-ER
and TDH-ER, and based on the idea of majority voting, a large number of correct isA relations can
greatly relieve the negative effect of these noise relations in this algorithm.

3.2. Type Information Generation

After extracting attributes of instances and classes, each instance, its attributes and the classes in its
corresponding Wikipedia page naturally form a graph, in which the given instance and its classes
are linked by shared attributes. To compute the probability of the class being the type of the given
instance leveraging the graph structure, we first propose a random graph walk model to infer the
types of each given instance. Considering the attributes of many instances are still incomplete or
missing, we then present a method to get each instance’s most similar instances that have attributes
and improve the random graph walk model with this kind of data.

3.2.1. Random Graph Walk Model

3.2.1.1. Graph Construction

m

Given an instance i, it may contain a set of attributes {a; ;.’:1 and have a set of classes {CZ b, inits
corresponding Wikipedia page. Each class c;; may also correspond to a set of attributes A% . Here,

we create a directed edge from i to each of its attributes a;. If an attribute a; is also an element in

the set A% of some class c; , adirected edge will be built from a; to c}i . An example of the constructed

graph of i is shown in Figure 5. Since all the attributes are derived from Wikipedia, people are free
to use different labels to represent an attribute with the same meaning (e.g. author and writer). This
may result in the absence of many edges from attributes to classes. Hence, we group synonymous

attributes using BabelNet (Navigli & Ponzetto, 2012), and if some class c; does not have the attribute
a; , but has a synonymous attribute of a; , then the directed edge connecting from a; to cA’ will also
be created.

3.2.1.2. Random Graph Walk

According to the attribute-driven type inference assumption described in Section 1, if an instance
contains more representative attributes of one of its corresponding classes, then the class may probably



Algorithm 1. Algorithm for class attribute extraction

Algorithm 1: Class Attribute Extraction
Input: A Refined Class Hierarchy CH* = (C*, R¥),
2-Tuple TUPL = (CE, AY),
L refers to some language;
Output: Enriched 2-Tuple TU PE = (C*, AL)
1 Use IT-ER for each ¢ € C* and update TU P%;
2 Queue + 0, Queuey, + 0, Queue + ;
Sort each ¢ by its maximum depth in CH” in ascending or
descending order;

w

4 Put each sorted ¥ into Queueyg in ascending order;
5 Put each sorted ¢ into Queuey, indescending order;
6 while true do

7 Queue = Queuey;

8 while Queue # () do

9 ck = DeQueue(Queue);

10 Use TDH-ER for ¢t and update TU PL;

11 if TU P is unchanged then

12 L return TU PL;

13 Queue = Queueyy;

14 while Queue # () do

15 (JL = DeQueue(Queue);

16 Use BUH-ER for Cf and update TU P,
17 if TUPL is unchanged then

18 L return TUPE;

be the type of this instance. Driven by this idea, on the constructed graph of each instance, if some
class can be reached by more of its representative attributes, then the probability of the class being
the type of the given instance is higher. Based on this analysis, we design a random graph walk
model for type inference of each instance. In this model, we first compute two kinds of transition
probabilities between different nodes in the constructed graph of the given instance, and then get
the probability of a TypeOf relation existing between a class and the given instance through random
walks over the whole graph.

Transition Probability Starting from the Given Instance. Given an instance i, the transition

probability P, from i to one of its attributes a; in the constructed graph is defined as
i ) _ Weight(a;)

ey
> llWeight( a;)



Figure 5. An example of the constructed graph of instance i
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where Weight( aii) is the reciprocal value of the frequency that a]". occurs in the attribute sets of
all the classes in Wikipedia. We argue that the fewer classes an attribute is shared by, the more
representative this attribute is, so if the frequency of aj is low, its weight will be high, which shows

that aj. is a representative attribute because it is shared by few classes. When walking a step from i

to a;, the walk tends to choose the most representative attribute (i.e. the attribute belonging to the

fewest classes) so that it has better chance to walk to the correct classes (i.e. types).
Transition Probability Starting from the Attributes. Given an instance i, to walk one step

i

away from i’s attribute a; toaclass ¢, ¢

is picked uniformly from the classes that have edges

connecting a' . This transition probability P, .is defined as
J AC

P, (a;,c;):WLC' @)

where IN | is the number of the classes that have edges connecting a; in the constructed graph

of i. This definition means that the classes having edges connecting aj have an equal opportunity as

the destination. For example, in Figure 6, there are two directed edges from attribute a, to classes c,
and c,, so both of the transition probabilities P, (a,, ¢,) and P, . (a,, c,) are 0.5.

With these two kinds of transition probabilities, we define a 2-step random walk process over
the graph of each instance as follows:



1. From an instance i, walk a random step to one of its attributes aj with the transition probability
P, (z’,a;) (Equation 1).
2. From an attribute a’j’. , walk a random step to one of the classes CZ; with the transition probability

P (ajvc;) (Equation 2).

Based on this random walk process for instance i, the random graph walk model computes the
probability P, of reaching each class c; from i using the following formula:

P (i) =3P (120)) P (0),¢1) G

We then normalize all of these probabilities (i.e. PW (z}c;)) to sum up to 1. Each normalized

probability is taken as the probability of a TypeOf relation existing between each class and i. If the
normalized probability of class ¢, is greater than a threshold 6, c:, will be determined as a type of
i.

3.2.2. Acquisition of Most Similar Instances

In order to better infer types of the instances which are short of attributes, we leverage each instance’s
most similar instances that have attributes to improve the proposed random graph walk model. Here,
we present a method with a context similarity metric and an existing classes similarity metric to
measure the similarity degree between instances.

Context Similarity Metric. To measure the context similarity degree between instances, we
compute the similarities between the instances’ vectors trained on the whole Wikipedia corpus. Each
vector is treated as the context representation of each instance. If two instances appear in similar
contexts, then they are close to each other in the same vector space. In our work, we use word2vec
(Mikolov et al., 2013) to generate the vector of each instance. In the training process, each instance
is taken as one word unit. Given two instances [ and Iy the context similarity metric between their
vectors v(i,) and v(i,) is defined as

i) xe(d)
CSM (i ,i,)=———== 4
)= ol @

The context similarity metric is actually the cosine similarity between two vectors v(i,) and v(i).

Existing Classes Similarity Metric. Similar instances tend to share similar topics (i.e. the classes
in Wikipedia pages of instances). Thus, given two instances i, and i,, we define the set of classes
in the Wikipedia pages for each instance as its existing class set, and the existing classes similarity
metric between two existing class sets ECset(i|) and ECset(i,) is defined as

.. |ECset(i,) N ECset(i,)|
ECSM (i ,1,)= : : ()
|ECset(i,) U ECset(i, )|

2

The existing classes similarity metric is actually the Jaccard Similarity between two sets ECset(i,)
and ECser(i,).



To balance the two metrics defined above, we get each instance’s most similar instances that
have attributes by maximizing the product of the two metrics. The Integrated Instance Similar Score
between two instances i, and i, is defined as

118S(i, i,)=(CSM(i ,i,)+1) x (ECSM(i, i, )+1) (6)

1772 1772 1772

There may exist one metric value between i, and i, that equals 0. This is problematic because it
will result in a O Integrated Instance Similar Score, which wipes out other metric values when they
are directly multiplied. Thus, we add 1 to each value of both the metrics before the multiplication in
Equation (6). If there does not exist an instance i, satisfying IISS(i , i,) > 1, the instance i, will not
get any similar instance.

3.2.3. Improved Random Graph Walk Model

For each instance, after obtaining its most similar instances that have attributes, we leverage this data
to revise the constructed graph and improve the random graph walk model.

3.2.3.1. Graph Revision

Given an instance i, we revise its original constructed graph by adding i’s most similar instances

{s'}'_, and their attributes. We first enrich the attribute set {a }_, of i with the attributes of the

obtained most similar instances, which results in an updated attribute set {a; };L;l (n* > n). We then
create directed edges respectively from i to each element in {sf_}:zl and from each similar instance
s: to each of its attributes. If a newly added attribute is an element in the attribute set A% of some
class cz , adirected edge will also be built from this attribute to c, . Figure 6 gives an example of the

revised graph of i.
3.2.3.2. Improved Random Graph Walk

According to the revised graph of each instance, we need to redefine the transition probability starting
from the given instance and revise the random walk process to improve the original model.
Revised Transition Probability Starting from the Given Instance. Given an instance i, when

walking one step away from i, the walk may get to an attribute a;. or one of i’s most similar instances
s, . Therefore, we define a revised transition probability RP,, from i to a; and a new transition

probability P fromito s’ as

RP, (ial)=a- P, (ia) )
P (i.s) ) =(1-a) x %((Zi; ®)

Where « € [0,1] is a constant, P, (z’,a;.) is the original transition probability (Equation (1))

from i to a;, I1SS (4, si) is the Integrated Instance Similar Score between i and s’ (Equation (6)),

and I155(i,*) is the sum of Integrated Instance Similar Score between i and each of its most similar
instances. Here, there are two extreme cases for the value of « : 1) if i originally has its own attributes



Figure 6. An example of the revised graph of instance i
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after the step of attribute extraction but does not have the most similar instances that have attributes,
we set a=1; 2) if i does not have its own attributes but does have the most similar instances that
have attributes, we set a=0.

The second revision for the original model is that we only modify the first step of the random
walk process defined in Section 3.2.1.2. In the modified first step, starting from an instance i, the

walk may get to an attribute a;i either by the directed edge from i to a’f with the transition probability
RP, (i,a;) (Equation (7)), or by two steps through one of i’s most similar instances 57‘ with the
transition probabilities P, (z,sﬁ) (Equation (8)) and P, (si,a;) (Equation (1)). Therefore, we define
a revised probability RP, of reaching each i’s class ¢, from i itself based on the revised random

walk process as follows:

+

L
RP, (ic)=S"RP, (i:0)) P, (a),c )45 P (in5) - ST, (5120 - Py al et )
—1 j=1

J=1

After normalizing all of the above probabilities (i.e. RRW (i,cé) ) to sum up to 1, we also need

to learn a threshold 6, to decide whether there exists a TypeOf relation from the class c,i to the
instance i. The details of parameters training are given in Section 4.1.3.

4. EXPERIMENTS

In this section, we evaluated the effectiveness of our approach for type inference and the quality of
the obtained type information in MulType.



Table 1. The details of each dataset

Dataset #Correct Triples (percentage) #Incorrect Triples (percentage)
English 4,484 (76.2%) 1,402 (23.8%)
Chinese 4,972 (85.8%) 821 (14.2%)

4.1. Evaluation of the Proposed Approach

We evaluated our approach on two datasets in different languages. All the datasets and codes used

in this work are publicly available®.

4.1.1. Datasets and Evaluation Metrics

Data Sets: We randomly selected 1,000 English articles and 1,000 Chinese articles from
Wikipedia. To generate the evaluation benchmark for each dataset, we asked five graduate students
to label whether there exists a TypeOf relation from each category (i.e. class) to the given article
(i.e. instance). The labeled results are based on majority voting. The details of labeled correct
(or incorrect) triples representing TypeOf relations are shown in Table 1.

Evaluation Metrics: After training the parameters (will be explained in Section 4.1.3) in our
approach and some of the designed comparison methods (will be introduced in Section 4.1.2)
on the labeled datasets, we evaluated the results with three metrics, which are in terms of P
(Precision), R (Recall) and F1 (F1-score).

4.1.2. Comparison Methods

In this paper, our approach is based on the attribute-driven random graph walk model (i.e. the improved
random graph walk model proposed in Section 3.2.3.2). We compared our approach (denoted as
ARGW) with the following methods.

Heuristic Rules (HR): The heuristic rules are used in some works (De Melo & Weikum, 2010;
Suchanek, Kasneci, & Weikum, 2008) for inferring the types of instances from Wikipedia by
checking whether the headword noun of the given class is plural or countable. This is the state-
of-the-art method to infer instance types from the existing classes in Wikipedia. Note that when
applying this method to the Chinese dataset, we first transformed the Chinese instances and
classes into English ones through the cross-language links in Wikipedia, and then inferred the
types of instances.

Word Embedding (WE): For any specific language, our approach generates a vector
representation for each instance (introduced in Section 3.2.2) using word2vec (Mikolov et al.,
2013) on the all Wikipedia articles of that language. Actually, after training, we got the vector
representation for each word, so we denoted each class as the mean vector of the words in each
class. Given an instance and one of its classes, we computed the cosine similarity between their
vectors. If the similarity is greater than a fixed threshold ? , then the class is inferred as the type
of the given instance.

Attributes Similarity (AS): Given an instance and one of its corresponding classes, this method
directly calculates the Jaccard Similarity between their extracted attribute sets. If the similarity
is greater than a fixed threshold * , then the class is inferred as the type of the given instance.
Simplified Version of Our Approach (S-ARGW): In this method, after extracting the attributes
of instances and those of classes, we replaced the improved random graph walk model with the
original one (proposed in Section 3.2.1) without leveraging each instance’s most similar instances
that have attributes.



4.1.3. Parameter Tuning

In the experiment, we applied 5-fold cross validation to train parameters in our approach and the
comparison methods. One kind of parameters is the thresholds for inferring whether there exists a
TypeOfrelation from a class to an instance in WE, AS, S-ARGW and ARGW. The other kind is the
constant « (in Equation (7) and (8)) used in ARGW. Here, we recorded the F1-score when varying
the threshold 3 of WE or v of AS. The varying process for both 5 of WE and v of AS is starting
from O with a step size of 0.05. For the thresholds 91 of S-ARGW and 92 of ARGW, we observed
that they are negatively correlated with the number 7 of classes for the given instance. In other words,
the more classes occurring in the Wikipedia page of the given instance, the greater possibility of
more types existing in these classes, the more types can be taken as destinations of the random walk
in S-ARGW and ARGW, the lower normalized probability of reaching each class by the random

walk. Hence, we recorded the Fl-score when varying 6, xn or 6,xn with the constant « . The

varying process for ¢ xn and 6,xn is also starting from 0 with a step size of 0.05, and « is changed
with a step size of 0.1 (starting from 0.1 to 0.9).

Figure 7 shows the final results of the parameters when F1-score reaches the peak (we omitted
some unimportant parts of the tuning results due to the poor performance and limited space). For
WE, the threshold  was set to 0.1 on both the English and Chinese dataset. For AS, the threshold
v was set to 0.15 and 0.2 on the English dataset and Chinese dataset, respectively. For S-ARGW,

the threshold 0, was setto 0.6 / nand 0.75 / n respectively on the English dataset and Chinese dataset.
For ARGW, we set the threshold 92 = 0.9 / n with the constant « = 0.5 on the English dataset, and
6,=1/nalso with a = 0.5 were applied to the Chinese dataset.

4.1.4. Overall Performance and Analysis

In our approach (i.e. ARGW) and the comparison methods WE, AS and S-ARGW, we need to extract
the attributes of instances and those of classes. Here, we utilized the strategies of attribute extraction
proposed in Section 3.1 to finish this task. For each instance when applying ARGW, to ensure the
quality of type inference, we used at most its top-5 similar instances that have attributes. These similar
instances are acquired by the method presented in Section 3.2.2. In another comparison method HR,
we applied the head finding method proposed in (Ponzetto & Strube, 2007) to parse the headword
noun of each class. Table 2 gives the overall results of our approach and the comparison methods on
the labeled dataset, and we can see that:

e  ARGW outperforms other approaches in all the evaluation metrics, which proves that our approach
can better perform language-independent type inference of the instances from Wikipedia. All
attribute-based approaches (i.e. AS, S-ARGW and ARGW) outperform the embedding-based
approach WE in all evaluation metrics and the rule-based approach HR in precision, which
demonstrates the positive impacts of our introduced language-independent feature: attributes.
Since some instances and classes are short of attributes, some attribute-based approaches (i.e.
AS and S-ARGW) are worse than the rule-based approach HR in recall and F1-score. However,
our approach ARGW outperforms HR in these two evaluation metrics, which reflects the value
of the most similar instances that have attributes for type inference.

e ARGW is better than S-ARGW in both precision and recall. This is because the attributes of
the obtained most similar instances that can actually complement the attributes for two kinds
of instances. One kind is the instances that already have attributes, but not complete. Thus,
the attributes from the most similar instances can help this kind of instances infer types more
accurately, which results in the improvement in precision. The other kind is the instances which
have no attribute. ARGW can help this kind of instances perform type inference, which improves
recall. In addition, ARGW and S-ARGW consistently outperform AS in precision, recall and



Figure 7. The results of parameter tuning in WE, AS, S-ARGW and ARGW
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Table 2. Overall results of type inference (%)
English Dataset Chinese Dataset
Approach
P R F1 P R F1
HR 83.9 53.1 65.0 89.4 48.1 62.5
WE 77.1 32.6 45.8 80.5 23.4 36.3
AS 85.2 40.3 54.7 91.8 30.8 46.1
S-ARGW 90.3 453 60.3 95.4 40.6 57.0
ARGW 91.7 64.3 75.6 98.1 52.8 68.7

F1-score. It means that applying our proposed attribute-driven type inference assumption to type
inference is reasonable and more effective.

e Another interesting phenomenon is that our approach ARGW on the Chinese dataset achieves
higher precision than that on the English dataset, but the contrary holds for recall. According
to the statistics, each instance in datasets can get at least one most similar instance that have



attributes, but only part of classes (86% classes in the English dataset and 72% classes in the
Chinese dataset) can get attributes using the attribute extraction strategies in Section 3.1. Hence,
lower proportion of the Chinese classes that have attributes is the main reason leading to lower
recall. Besides, we found that each attribute is averagely shared by different number of classes in
Wikipedia of different languages (718 classes on average per attribute in English Wikipedia and
77 classes on average per attribute in Chinese Wikipedia). Our attribute-driven type inference
assumption relies on representative attributes of each class, and the fewer classes an attribute
is shared by, the more representative this attribute is (reflected in Equation (1)). Thus, higher
average number of classes per attribute in English Wikipedia leads to lower representativeness
of attributes, which may affect the precision of ARGW on the English dataset. It also indicates
that our approach can be further improved in computing the representativeness of attributes for
each class.

4.2. Evaluation of MulType

With the empirical tuned parameters on the labeled datasets, we applied our proposed approach to
the whole English and Chinese Wikipedia. Thus, we obtained 7,571,009 different English TypeOf
relations and 400,349 different Chinese TypeOf relations. These relations were denoted as triples
to constitute a KB called MulType. We analyzed the accuracy of the type information in different
languages, gave the execution time for all parts of our approach to generate Multype, and compared
MulType with other KBs.

4.2.1. Accuracy of the Type Information in MulType

Since there are no ground truths available, we cannot verify the type information in MulType
automatically. At the same time, due to the large number of type information, it is also impossible
to evaluate them manually. Therefore, we designed a sampling strategy and a labeling process to
approximately evaluate the correctness of the type information in MulType.

Sampling. Given all the type information of some language L, sampling aims to extract a subset
of type information (called samples) which can represent the distribution of the whole given data. We
first randomly selected 100 instances from all instances of language L. Then, the samples of language
L consist of the triples representing the TypeOf relations between the selected instances and their
corresponding classes. This sampling strategy is similar to that of Yago.

Labeling. We used the similar labeling process as that used in Yago and Zhishi.schema. Five
graduate students were invited to participate in the labeling process. Each annotator has three choices
namely “Correct”, “Incorrect” and “Unknown’ to label each sample. After each student labeled all
the samples, we computed 1) the Fleiss” Kappa to evaluate the annotation consistence (Fleiss, 1971);
2) the average precision with the Wilson interval (Brown et al., 2001) at == 5% to generalize our
findings on the samples to the whole type information of language L.

We applied the sampling strategy and the labeling process to the English and Chinese type
information in MulType. The following results show the high accuracy of the inferred type information
in MulType:

e Accuracy of English Type Information. Given 100 randomly selected English instances, we
got 582 samples in total. After labeling, the average number of “Correct” votes is 534, the
precision achieves 91.42% =+ 2.25% and the Fleiss” Kappa is 0.796.

e Accuracy of Chinese Type Information. Given 100 randomly selected Chinese instances, we
got 641 samples. The average number of “Correct” votes is 622, the precision is 96.74% =+
1.33% and the Fleiss” Kappa is 0.741.



Table 3. Execution time for all parts in our approach to generate MulType

Each Part of Our Approach Execution Time (hour) of Each Part
English Type Information Chinese Type Information
Instance Attribute Extraction 1.93 0.24
Class Attribute Extraction 0.72 0.21
Most Similar Instances Acquisition 8.23 2.10
Type Inference 1.79 0.37
in Total 12.67 2.92

4.2.2. Execution Time for Generating MulType

We sequentially ran each part of our approach on English and Chinese Wikipedia, and used a Linux
server with Intel Xeon E5-2630 v4 2.20 GHz CPU and 256GB memory. The execution time for
generating MulType is given in Table 3. From this table, we can find:

e The most time-consuming part is most similar instances acquisition. This is because it uses the
whole English (or Chinese) Wikipedia articles as the training corpus for the word2vec model to
generate the vector representation of each instance.

e  The execution time for generating English type information is much greater than that for generating
Chinese type information. The main reason is that the instances, classes and attributes in English
Wikipedia are much more than those in Chinese Wikipedia.

e  Generating MulType (including English and Chinese versions) only needs 12.6742.62=15.29
hours by sequentially executing each part of our approach on English and Chinese Wikipedia.
The total execution time is acceptable, and it also has much room for improvement if we can
parallelize some tasks in all parts of approach.

4.2.3. Comparison with Other Knowledge Bases

To our knowledge, MulType is the first work to publish large-scale Chinese type information as the
open data. MulType contains 400,349 different Chinese TypeOf relations, 216,727 different Chinese
typed instances and 25,406 different Chinese types. Since the existing open KBs do not contain
Chinese type information, we only compared the English type information in MulType with that
in the well-known KBs namely DBpedia, Yago and LHD. The English TypeOf relations in these
three KBs are also mined from Wikipedia. We computed the TypeOf relation overlap, typed instance
overlap and type overlap between MulType and other KBs by exact string matching of the labels for
instances and types. The results are given in Table 4.

In MulType, there exist 7,571,009 different English TypeOfrelations, 3,207,668 different English
typed instances and 475,148 different English types. Compared with DBpedia, Yago and LHD,
MulType contains the second largest number of English TypeOf relations. The overlap of English
TypeOf relations between MulType and other KBs is not large, which indicates that the English
TypeOfrelations generated by our approach are good supplements to the existing KBs. For MulType,
after removing the existing English TypeOfrelations in DBpedia, Yago and LHD, we found MulType
contributes 3,927,727 new English TypeOf relations in total.

The number of English typed instances in MulType (ranks the third) and those in other KBs are
at the same order of magnitude, i.e more than 3 million. On the basis of the typed instance overlap,
MulType can at least contribute more than 0.27 million new typed instance to each of other KBs.
Besides, MulType has the largest number of English types and there are 148,395 new English types



Table 4. Comparison results between the English type information in MulType and that in other KBs

MulType DBpedia Yago LHD
TypeOf Relation Number 7,571,009 3,121,552 14,164,808 6,505,492
TypeOf Relation Overlap / 80,693 3,521,747 123,531
Typed Instance Number 3,207,668 3,121,054 3,632,793 3,618,094
Typed Instance Overlap / 2,445,095 2,928,265 2,749,709
Type Number 475,148 401 445,337 47,626
Type Overlap / 29 326,753 3,648
Average Types per Instance 2.36 1.00 3.90 1.80

with singular headword nouns, which bring a lot of new English TypeOf relations compared with
Yago. This also reflects the value of our proposed approach. Since the fact that many instances play
different roles in real world, each instance may correspond to not only one type. Hence, for each given
KB, we computed the average types of each English instance, and MulType also performs better than
DBpedia and LHD in this point.

5. WEB ACCESS TO MULTYPE

To publish MulType as the open data for public access, we not only offer the downloading* of the
whole data, but also provide lookup service and SPARQL endpoint. Lookup service allows querying
with the Wikipedia URLs of instances. SPARQL endpoint provides a more professional querying
way using SPARQL language.

5.1. Linked Data

According to the Linked Data principles’, MulType creates URIs for all instances and types, and
provides sufficient information when someone looks up a URI by the HTTP protocol. In order to
represent instances and types of different languages, we design a URI pattern to indicate what the
language of an instance or a type is. This pattern http://www.multype.org/[language]/[datatype]/
[label] is composed of four parts. The first part http://www.multype.org/ is the default namespace.
The second part specifies the language of an instance or a type. If the given instance (or type) is
English (or Chinese), the second part is en (or zh). The third part shows the given URI represents an
instance or a type. The last part is the label of an instance (or a type). For English labels, we replace
the spaces between words with underlines. In addition, to generate legal URIs as “href” values for
common Web browsing, we encode non-ASCII characters in the last part into UTF-8%. Two examples
of the URIs in MulType are as follows:

e  Given the English instance “Albert Einstein”, its URI is denoted as http://www.multype.org/en/
instance/Albert_Einstein.

e  Given the Chinese type “ZlU# (Animal)”, its corresponding URI is http://www.multype.org/zh/
type/ BES%8 A% A8%ET%89%A9, where %E5%8A%A8%ET7%89%A9 is the UTF-8 format of
the Chinese label “Z[i#47.

When publishing MulType, we follow the best practice recipes (Berrueta et al., 2008) and try
to reuse the existing RDF vocabularies which have clear semantics and are widely used. rdf:1abel is
used as the predicate to connect each URI to its corresponding label. Since there is no existing RDF
vocabulary for the TypeOf relation, we store its inverse relation leveraging rdf:type. For example,


http://www.multype.org/en/instance/Albert_Einstein
http://www.multype.org/en/instance/Albert_Einstein
http://www.multype.org/zh/type/%E5%8A%A8%E7%89%A9
http://www.multype.org/zh/type/%E5%8A%A8%E7%89%A9

the following triple <http://www.multype.org/en/instance/Albert_FEinstein> rdf:type <http://www.
multype.org/en/type/Jewish_physicists> represents that there exists a TypeOf relation from “Jewish
physicists” to “Albert Einstein”.

5.2. Lookup Service

To encourage non-Semantic Web community users to browse the type information in MulType,
we provide a simple lookup service’, where users can directly submit the Wikipedia URL of some
instance to acquire type information. For example, if a user wants to know the types of the instance
“MySQL”, he or she can query with its corresponding Wikipedia URL https://en.wikipedia.org/
wiki/MySQL. The returned types “Cross-platform software”, “Client-server database management
systems”, “RDBMS software for Linux”, “Free database management systems”, “Sun Microsystems
software” and “Oracle software” are shown in Figure 8.

5.3. SPARQL Endpoint

SPARQL Endpoint?® is also provided for querying MulType. This querying way is appropriate for the
users who know in advance exactly what information is needed. These users can submit customized
queries to this endpoint over the SPARQL protocol®. We use AllegroGraph RDFStore!° to store type
information and provide querying capabilities.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a language-independent approach to infer the types of instances from
multilingual Wikipedia. The proposed approach contains two parts. The first part is attribute extraction,
which aims to generate the attributes of instances directly from infoboxes, and the attributes of classes
with a general iterative algorithm using several language-independent rules. The second part is type
information generation, which uses an adaptation of the random walk algorithm to infer the types
of instances. After applying the proposed approach to the English and Chinese Wikipedia, we got
the first version of MulType, a knowledge base describing the types of instances from multilingual
Wikipedia. Different ways of Web access to MulType have been provided to users, including the
downloading of data dump, lookup service and SPARQL endpoint.

The experiments about evaluating the effectiveness of our approach have been conducted on two
datasets of different languages. The results showed that our approach outperforms the state-of-the-art
baselines in different evaluation metrics. We also designed some other experiments on evaluating the
quality of type information in MulType. These results not only demonstrated that the type information
in MulType achieves a high accuracy, but also verified that there exists a large scale of new English
and Chinese type information which are not covered by the existing KBs.

In the future, we first consider applying our proposed approach to the Wikipedia of other
languages, such as Arabic, Spanish and German. Besides, in order to add emerging type information
into MulType, we will perform live update of Mul Type by continuous parsing the dumps of multilingual
Wikipedia!'. Regarding to our approach, since it relies on the coverage of the attributes of instances
and those of classes, we plan to extract attributes for more instances and classes from Web documents
and complement attributes leveraging crowdsourcing related techniques. To better acquire the results
of type inference leveraging the proposed attribute-driven type inference assumption, we need to study
how to measure the representativeness of attributes for each class without depending exclusively on
the number of classes which each attribute is shared by.


https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/MySQL

Figure 8. An example of lookup service
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