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Abstract

Schema-level knowledge is important for different semantic applications, such
as reasoning, data integration and question answering. Compared with
billions of triples describing millions of instances, current Linking Open Data
has only a limited number of triples representing schema-level knowledge. To
facilitate multilingual schema-level knowledge mining, we propose a general
approach to learn Linked Open Schema (LOS) in different languages from
social Web sites, which contain rich sources (i.e. taxonomies composed of
categories and folksonomies consisting of tags) for mining large-scale schema-
level knowledge. The core part of the proposed approach is a semi-supervised
learning method integrating rules to capture equal, subClassOf and relate

relations among the collected categories and tags. We respectively apply the
proposed approach to the selected English social Web sites and the Chinese
ones, resulting in an English LOS and a Chinese LOS. We publish the English
LOS and the Chinese one as open data on the Web with three access levels,
i.e. data dump, lookup service and SPARQL endpoint. Experimental results
show the high accuracy of the relations in the English LOS and the Chinese
one. Compared with DBpedia, Yago, BabelNet, and Freebase, both the
English LOS and the Chinese one not only have large-scale concepts, but
also contain the largest number of subClassOf relations.
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1. Introduction

Schema-level knowledge is important for different semantic applications,
such as reasoning [1, 2], data integration [3, 4] and question answering [5, 6].
There are over 1,100 datasets within the current Linking Open Data (LOD)1

Cloud, where the number of triples representing schema-level knowledge is
limited when compared with the billions of triples describing millions of
instances. For example, this characteristic of data distribution exists in
each of the core datasets DBpedia [7], Yago [8] and Freebase [9] in LOD
as well as the well-known Chinese LOD Zhishi.me [10]. DBpedia has a small
ontology containing 685 classes which form a concept hierarchy and 2,795
properties. Yago links Wikipedia leaf categories to WordNet [11] synsets to
build a taxonomy. Although the Yago taxonomy has about 350,000 classes,
the number of subClassOf relations is relatively sparse. Freebase has a very
shallow taxonomy with dozens of domains and hundreds of types. Zhishi.me
uses Zhishi.schema [12] to refine its original category system, which results
in a taxonomy with only 39,774 subClassOf relations.

Current social Web sites contain different kinds of taxonomies (e.g.
product catalogues and Web site directories) composed of categories and
folksonomies (e.g. the collaborative tagging systems in Instagram2 and
Stackoverflow3) consisting of tags, which are rich and important sources for
schema-level knowledge mining.

A question here is, why are different kinds of taxonomies and folksonomies
important? Actually, they are different local schemata applicable in various
scenarios, where even the concepts (denoted by categories and tags) of the
same label may have different meanings. For example, when concept “Sports”
is the child of concept “Shopping and Service” in eBay4, it means sports
goods; when “Sports” is the child of concept “Recreation” in Wikipedia,
it represents kinds of physical activities. Since it is unrealistic to design
a general schema from scratch for all applications in all areas, more local

1http://linkeddata.org/
2http://instagram.com/
3https://stackoverflow.com/
4https://www.ebay.com/
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schemata such as different taxonomies and folksonomies are required for
domain-specific needs.

The idea of learning schema-level knowledge from social Web sites was
first discussed in our previous work [12], which aims at building Linked
Open Schema (LOS) by automatically discovering different relations among
categories in taxonomies and tags in folksonomies, but there exist three main
problems in the proposed approach as follows:

• This approach relies on language-specific features and rules, which can
only be applied to Chinese social Web sites. This limits the broader use
of this approach for constructing the LOS in different languages, which
is important to facilitate multilingual schema-level knowledge mining.

• This approach depends on manually labeled data for applying machine
learning techniques, causing lots of manual work which should be
performed before using this approach.

• This approach separately uses rules or machine learning techniques
to learn relations among categories and tags, i.e. it does not
consider jointly exploiting the advantages of rules and machine learning
techniques to acquire better learning results.

To solve the above problems, we substantially extend our conference
papers [12, 13] by designing a new general approach which can be applied to
the social Web sites of different languages to learn relations among categories
and tags. This approach not only automatically generates labeled data for
machine learning, but also encodes rules into the machine learning process
to get better learning results. More specifically, we first use a blocking
mechanism to reduce the number of concept pairs (each pair consists of two
categories, or two tags, or a category and a tag) to be calculated to ensure
that our approach can be applied to a large-scale scenario. Then, we present
an automatic strategy to generate labeled data from the given concept pairs.
After that, we propose a semi-supervised learning method to detect equal,
subClassOf and relate relations from concept pairs, and a post-processing
step based on generic rules is leveraged to revise the misclassified results in
each iteration of the learning process.

After applying this new proposed approach to the English social Web
sites and the Chinese ones, we acquire an English LOS and a Chinese
LOS. Compared with DBpedia, Yago, BabelNet [14] and Freebase, both the
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resulting English LOS and the Chinese one have large-scale concepts and
contain the largest number of subClassOf relations.

In summary, the main contributions of this work are listed as follows:

• We propose a general approach to construct LOS in different languages
from social Web sites to facilitate multilingual schema-level knowledge
mining.

• We publish the data dump of constructed LOS as open data for public
access, including the English and Chinese versions. We not only directly
offer the downloads of the dataset, but also provide Lookup Service
and SPARQL Endpoint, which respectively allow querying with concept
labels and the SPARQL language for exploring the linked open schema.

• We carry out a comprehensive set of experiments to evaluate our
approach. Experimental results show that the proposed approach not
only harvests the large-scale and high-quality English LOS and Chinese
LOS, but also significantly outperforms the designed comparison
methods in terms of precision, recall and F1-score.

The rest of the paper is organized as follows. Section 2 gives an overview
of our approach. Section 3 describes the technical details. Section 4 shows
the experimental results. Section 5 demonstrates the Web access of LOS.
Section 6 outlines some related work and finally we conclude the paper and
describe the future work in Section 7.

2. Overview

In this section, we give an overview of our approach to building linked
open schema in any language. We start with a brief introduction of the
problem, and then provide the overall workflow of our proposed approach.

2.1. Problem Defintion

Input: Given a set of social Web sites WS = {ws1, ws2, . . . , wsn} in a
certain language, where each Web site ws might contain a set of categories
CAws = {ca1, ca2, . . . , cam} as well as a set of tags TAws = {ta1, ta2, . . . , tao}.
These categories are organized in a hierarchical way. In a category hierarchy,
a category might be associated with zero or more parent categories as well as
child categories. In Figure 1, we show an example of the categories in Google
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Figure 1: An example of the categories in Google Product Taxonomy

Figure 2: An example of the tags in Stackoverflow

Product Taxonomy5, in which category “Uniforms” has a parent category
“Clothing” and child categories “School Uniforms”, “Sports Uniforms”, and
etc. The tags are organized in a flat manner without relying on a controlled
vocabulary to annotate resources (e.g. Web pages, images and videos). The
flat organization means that tags do not have a previously defined hierarchical
structure. Here is an example in Figure 2, tags “nlp”, “terminology”,
“semantics” and “semantic-web” form a tag group to annotate a question in
Stackoverflow. In this paper, we define that the categories and tags collected
from social Web sites denote concepts. A category cai is defined to denote
a static concept as it is predefined by the Web site and cannot be freely
modified. A tag taj is defined to denote a dynamic concept because it is
often created on the fly by Web users and can be modified at any time
according to their own needs.

Output: We aim at building a linked open schema (in any language)
composed of concepts from the input Web sites. The generated linked
open schema contains three types of semantic relations, i.e. equal,
subClassOf, and relate. We define these relations according to the
definitions of owl:equivalentClass, rdfs:subClassOf and skos:related.
Two concepts are equal if and only if they contain exactly the same set of
instances. One concept is a subclass of another if and only if all the instances
of the former one are instances of the latter one. Two concepts are related if
there is an associative link between them and they do not have the equal or

5https://www.google.com/basepages/producttype/taxonomy.en-US.txt
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Figure 3: The workflow to generate linked open schema (LOS) cloud

subClassOf relation. The relate relation is the weakest semantic relation
among the three types. The subClassOf relations between the concepts from
different social Web sites form an integrated concept taxonomy while all the
extracted semantic relations build a large semantic network.

2.2. Workflow

We now provide a workflow to explain the whole process and how different
components interact with each other. As shown in Figure 3, we have four
main components, namely Blocking, Labeled Data Generator, Semi-supervised
Learner and Post-processor. The input of Blocking are the concepts (denoted
by categories and tags) collected from different Web sites. Blocking divides
all concepts into blocks and only forms unlabeled concept pairs within the
same block. Compared with the number of 2-combinations from the set
of all collected concepts, Blocking outputs a relatively small number of
concept pairs for further processing, which guarantees the scalability and
efficiency of our approach. The Labeled Data Generator generates labeled
data automatically by using the existing equal and relate relations in
BabelNet and subClassOf relations in Yago. Afterwards, we capture the
designed language-independent features of the labeled and unlabeled concept
pairs, including the lexical feature, Wikipedia-based feature, BabelNet-based
features and Web page based features to measure the relatedness between
concepts. A Semi-supervised Learner is then adapted to discover equal,
subClassOf and relate relations. The learned classifier can be updated
iteratively by adding new labeled data of high confidence. In each iteration,
a Post-processor is applied. During the post-processing step, we use two
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general and effective rules to filter out those misclassified pairs. Finally we
build the linked open schema composed of equal, subClassOf and relate

relations between concepts from multiple social Web sites.

3. Approach

3.1. Blocking

It is impossible to enumerate all concept pairs as candidates for semantic
relation detection. Blocking is to divide concepts into blocks where each block
only contains similar concepts for further processing. Here, we assume that 1)
concepts are similar when they share at least one feature, and 2) there may
exist a semantic relation between two concepts only from the same block.
A good blocking mechanism should be much cheaper than the subsequent
semi-supervised learning method, but it should still guarantee a high recall.

The blocking method consists of the following steps. Firstly, each concept
is represented by some representative features. Secondly, if two concepts
share one feature, they are put into the same block. Finally, an inverted
index is built so that each feature with the associated concepts is a block.
We use the sense of the lexical head of a concept to search BabelNet and
retrieve all hypernyms and hyponyms as the features of the given concept.
The lexical head is a basic concept in linguistics and refers to the word that
determines the syntactic category of the given phrase [15], e.g. “Physicists”
is the head of concept “Chinese Physicists”. If a head has multiple senses in
the given language, we simply union these feature sets as a single set. We do
not disambiguate the exact sense of the head because blocking cares more
about the recall instead of precision. We can tolerate noises in blocks and
use further steps to filter them out.

For instance, there are four concepts w, x, y, and z, the feature set of
each concept is as follows.

w={A}
x={A, B}
y={B}
z={C}

Then we build the following inverted index.

A={w, x}
B={x, y}
C={z}
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The generated blocks would be {w,x}, {x,y}, and {z}. After obtaining the
generated blocks, we extract all concept pairs from each block. Besides, to
remove the incorrect subClassOf relations in the existing hierarchies, we
extract the concept pairs which already hold the parent-child relations in the
existing hierarchies for further detection. For example, given a hierarchy:
“Chinese Physicists is a child of Physicists, Physicists is a child of

Scientists”, we extract additional concept pairs as follows.

{(Chinese Physicists, Physicists), (Physicists, Scientists)}

3.2. Generating Labeled Data

Labeled data is essential for the subsequent semi-supervised learning as
the training data. Here, we automatically generate labeled data by using
Yago and BabelNet. To our knowledge, compared with several large-scale
open knowledge bases (i.e. DBpedia, BabelNet and Freebase) in LOD, Yago
contains the largest and high-quality taxonomy consisting of subClassOf

relations. Similarly, BabelNet is the largest online synonym thesaurus and
also has large-scale Semantically Related relations which are similarly
defined as our relate relation. Therefore, we choose these two knowledge
bases to help automatically generate labeled data. Here, we randomly
selected 200 unlabeled concept pairs, each of which hold the equal relations
in BabelNet, and 800 unlabeled concept pairs with the subClassOf relations
in Yago. Additionally, we randomly selected 3,000 concept pairs which hold
the relate relations in BabelNet, while do not hold the equal relations in
BabelNet or the subClassOf relations in Yago. These 4,000 concept pairs
are treated as the labeled data for the subsequent semi-supervised learning.

3.3. Feature Engineering

To measure the relatedness between concepts from different aspects, we
define six features which are divided into two groups namely Basic Features
and Semantic Features. Basic Features refer to the lexical feature and
Wikipedia-based feature. Semantic Features include the BabelNet-based
features and Web page based features. The features of all concept pairs
will be fed to the Semi-supervised Learner to perform ternary classification.

3.3.1. Basic Features

a) Lexical Feature: To get the linguistic relatedness between concepts,
we use a token-based longest common sub-string asymmetric similarity as
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the lexical feature. The label of a concept c is denoted as lc, and the word
sequence of c is seq(lc). Then the Concept Label Similarity (CLSim) between
two concepts c1 and c2 is defined as

CLSim(c1, c2) =
|LCS(seq(lc1), seq(lc2))|

|seq(lc1)|
(1)

where |.| returns the length of a word sequence, and LCS6 is a function
to calculate the longest common sub-string sequence between two concept
labels.

b) Wikipedia-based Feature: Inspired by ESA (Explicit Semantic
Analysis) [16], we map a concept into several categories in Wikipedia, and
then use these categories to represent the concept. The benefits are threefold.
First, the concept representation is enriched from its label into a set of
categories. Second, the dimension of categories is usually much lower than
that of text features so that we avoid curse of dimensionality and enable
efficient processing. Third, the categories are of higher quality than texts
with less ambiguities.

The ESA vector of a concept c is ESAc = 〈wc1(c), wc2(c), ..., wcn(c)〉
where wci is a Wikipedia category and wci(c) is the corresponding weight
which indicates the relevance between the concept c and the Wikipedia
category wci. Then the ESA Vector Similarity (ESAVSim) between concepts
c1 and c2 is defined as

ESAVSim(c1, c2) =

∑
wcwc(c1) · wc(c2)√∑

wcwc(c1)
2 ·

∑
wcwc(c2)

2
(2)

ESAVSim(c1, c2) is actually the cosine similarity between the ESA vectors of
two concepts.

3.3.2. Semantic Features

Since basic features are computed only by the information brought by
the concept label, the semantics of the given concept are not considered.
Thus, we propose several semantic features which try to capture the semantic
relatedness between concepts.

c) BabelNet-based Features: Given two concepts c1 and c2, we map
them to BabelNet and compute the Wu & Palmer (WUP) similarity [17],

6https://en.wikipedia.org/wiki/Longest_common_substring_problem/
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which can be used to calculate relatedness with the depths of two synsets in
the BabelNet taxonomy, along with the depth of the Lowest Common Ances-
tor (LCA). This similarity between c1 and c2 is denoted as WUPSim(c1, c2)
and computed by

WUPSim(c1, c2) =
2 ∗ depth(LCA(c1, c2))

depth(c1) + depth(c2)
(3)

where LCA(c1, c2) denotes the lowest common ancestor of c1 and c2 in
BabelNet, and depth is a function to calculate the depth in BabelNet
taxonomy for the corresponding synset of the given concept. Note that a
concept may map to different synsets, hence we may get more than one WUP
similarity between two given concepts. Here, we only choose the maximum
WUP similarity, because it could lower the negative effects of ambiguity for
measuring the relatedness between two similar concepts in the same block
and guarantee a high recall for mining semantic relations.

In addition, we define another asymmetric similarity feature called
Relative Depth Similarity (RDSim) to measure the relative depth difference
between concepts. Here, we also choose the same synsets used in the
maximum WUP similarity for the given concepts c1 and c2. The RDSim
between c1 and c2 is defined as follows:

RDSim(c1, c2) =
depth(LCA(c1, c2))

depth(c2)
− depth(LCA(c1, c2))

depth(c1)
(4)

If the depth of c1 is deeper than that of c2, it indicates that c2 is more likely
to be a parent concept of c1. For example, given two concepts “Product”
and “Stroller”, their lowest common ancestor is “Artifact”. The depth of
“Stroller” is 10 and that of “Product” is 8, there exists a possibility that
“Stroller” is a sub-concept of “Product”.

d) Web page based Features: The context information such as the
parent concept of a static concept (i.e. category) or other concepts in the
same tag group of a dynamic concept (i.e. tag) can help reveal the real
meaning of each concept. For example, when concept “Sports” is the child
of concept “Shopping and Services” in eBay, it means sports goods; when
“Sports” is the child of concept “Recreation” in Wikipedia, it represents kinds
of physical activities. However, since such context information is limited and
heterogeneous for static and dynamic concepts, it is hard to get reasonable
relatedness between concepts only with this context information. Thus, we
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try to acquire more context information by querying the Web with the search
engine Google7.

To accurately get the context information returned by Google for each
category, the labels of the given category ca and its parent category pca
are jointly submitted to Google. However, the root categories in different
taxonomies do not have parent categories, but they are usually unambiguous,
otherwise users will be easily confused when exploring each taxonomy in
a top-down manner. Therefore, we simply submit the label of each root
category to Google to get its context information. Different from categories,
given a tag ta, we randomly select one tag ota that co-occurs in the same tag
group with ta and then jointly submit the labels of ta and ota to Google.

In each of the top 20 returned snippets of Web pages, we extract the words
co-occurred with ca (ta) in the same sentence except pca (ota), because pca
(ota) is a part of the query, thus it occurs quite a lot of times. After removing
the stopwords and the words with frequency less than 3, we adopt TF-IDF
(Term Frequency-Inverse Term Frequency) [18] for word weighting. As a
result, a concept (i.e. category or tag) c can be denoted as one n-dimension
context vector CV (c) = 〈w1(c), w2(c), ..., wn(c)〉, where the weight of the i-th
term CV (c)i is wi(c) and n is the number of all the words of all concepts. If
a word w does not co-occur with c, the corresponding value in CV (c) is zero.
Given two concepts c1 and c2, we compute their Context Vector Similarity
(CVSim) by

CVSim(c1, c2) =

n∑
i=1

CV (c1)i · CV (c2)i√
n∑

i=1

CV (c1)2i ·
n∑

i=1

CV (c2)2i

(5)

where CVSim(c1, c2) is actually the cosine similarity between CV (c1) and
CV (c2). Besides, c can also be represented by a context set CS(c) =
{w1, w2, ..., wm}, where wi is the i-th remained word of c and m is the number
of all remained words of c. According to this representation of two concepts
c1 and c2, we further define an asymmetric similarity called Relative Context
Set Similarity (RCSSim) to measure the relative coverage difference of Web

7http://www.google.com/
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page context set CS(c1) and CS(c2) as follows:

RCSSim(c1, c2) =
|CS(c1) ∩ CS(c2)|

|CS(c1)|
− |CS(c1) ∩ CS(c2)|

|CS(c2)|
(6)

This equation is based on a basic assumption that c1 is a sub-concept of
c2 if most of the returned pages of c1 are similar to those of c2 but only a part
of the returned pages of c2 are similar to those of c1. A similar assumption
is first proposed in [19]. Here, we use the context word set extracted from
the snippets to denote the returned Web pages of c1 and c2.

3.4. Semi-supervised Learning

While we generate labeled data by using Yago and BabelNet automati-
cally, the size of the sample of labeled data (only 4,000) in each language is
much smaller than that of the unlabeled concept pairs even after blocking.
So a natural idea is to use some kind of semi-supervised learning algorithm
to predict new relations in each unlabeled pair.

Although there are many existing algorithms such as label propagation
that can be used, we select the simplest and the most efficient one – self-
training [20]. In each iteration, self-training accepts the labeled data as
training data and learns a classifier. Then the classifier is applied to the
unlabeled data and adds concept pairs of high confidence to the labeled
data to train a new classifier for the next iteration. The whole process
will terminate if the difference between the predicted labels (i.e. equal or
subClassOf or relate) of the concept pairs given by classifiers in the two
consecutive iterations is smaller than a threshold or the maximal number of
iterations is achieved.

Note that we use the Support Vector Machine (SVM) [21] algorithm
to train the ternary classifier, which is known as the one of the best
single classifiers [22]. Moreover, our approach is slightly different from the
standard self-training algorithm. We do not directly add test results of high
confidence into the labeled data. We add a post-processing step to filter some
misclassified pairs using rules, which are introduced in the next subsection.

3.5. Post Processing

In order to guarantee the quality of the English LOS and the Chinese one
derived from the Semi-supervised Learner, we integrate a post-processing
step with the learning process to filter some misclassified pairs using rules.
Two general and effective rules are designed as follows:

12



Rule 1: Given a concept pair (c1, c2), if c1 and c2 are of different concept
labels, and c1’s the lexical head h(c1) has the same label with c2 itself, then
c1 subClassOf c2.

Rule 2: Given a concept pair (c1, c2), if c2 and c1 already hold a parent-
child relation in some social Web site, and they share the same lexical head,
then c1 subClassOf c2.

When these two rules are applied, we need to ignore case and the
difference in singular and plural forms for some languages (e.g. English). As
general rules, they can adapt to different languages. For example, in English,
concept “Chinese Physicists” has the lexical head “Physicists” which owns
the same label with concept “Physicists”, so we can infer that concept
“Chinese Physicists” subClassOf concept “Physicists” according to Rule
1 ; In Chinese, concept “T ¦D” (school in Jiangsu) and “¥)¦D”
(school in China) share the same lexical head “¦D” (school), and they
already hold a parent-child relation in Wikipedia, then we infer that concept
“T ¦D” (school in Jiangsu) subClassOf “¥)¦D” (school in China)
based on Rule 2 .

Although these rules are generic to any language, the solutions of deriving
the lexical head of each concept in different languages are different. Since
we only focus on English and Chinese in this paper, we apply the following
strategies for these two languages respectively.

For English: We use the same method used in [23] to find lexical
heads of English concepts. We parse the concept labels using the Stanford
parser [24], and constrain the output of the head finding algorithm [25]
to return each lexical head labeled as either a noun or a 3rd person
singular present verb. In addition, we modify the algorithm to return both
nouns for NP coordinations as lexical heads (e.g. both “Buildings” and
“Infrastructures” are returned as the lexical heads of concept “Buildings and
Infrastructures in Japan”).

For Chinese: We use the same method used in [26] to find lexical
heads of Chinese concepts. We take the last noun as the lexical head after
performing POS tagging on each concept with FudanNLP [27]. For example,
we parse concept “ ¥)�EäÄÊ (Chinese football player)” to get the
result “¥) (Chinese)/LOC�E (football)/NNäÄÊ (player)/NN”, then,
word “äÄÊ (player)” is treated as the lexical head.
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4. Experiments

4.1. Data Statistics

We selected twenty one popular social Web sites in English and fifty
one in Chinese. The data were crawled in September, 2015. The detailed
statistics of each site are shown in Table 1 and Table 2. From the table,
we listed the site name, its URL, the site type, the category number, the
tag number, and the average depth of the category taxonomy. If some site
does not contain any category or tag, we used � to indicate that the value
of that column is missing. Since the semantics of tags are less stable than
those of categories within an existing taxonomy, we did not take all tags from
these sites to build the linked open schema (LOS), including an English LOS
and a Chinese LOS. Instead, we only selected popular tags during August.
For English, we collected 242,303 labels in which 229,184 are categories and
13,119 are tags. For Chinese, there are 399,853 labels in which 328,248 are
categories and 71,605 are tags.

Table 1: Statistics for 21 popular social Web sites in English
Site URL Type #Category #Tag Avg Depth
Amazon http://www.amazon.com E-Commerce 3,047 / 2.23
Yahoo Answer https://answers.yahoo.com Q&A 977 / 2.54
Youtube http://www.youtube.com Video Sharing 127 / 2.50
Wikipedia (EN) http://en.wikipedia.org Wiki 103,476 / 5.00
MSN http://www.msn.com Portal 75 / 1.90
Foursquare http://foursquare.com SNS 360 / 2.75
Ebay http://www.ebay.com E-Commerce 10,536 / 4.40
Expedia http://www.expedia.com Wiki 46 / 2.00
Answers http://wiki.answers.com Q&A 8,535 / 5.77
Thisnext http://www.thisnext.com E-Commerce 3,177 / 2.63
Match http://www.match.com Dating 211 / 3.00
Yelp http://www.yelp.com Customer Review 277 / 2.12
Epinions http://www.epinions.com Customer Review 656 / 3.31
Bigboards http://www.big-boards.com BBS 771 / 3.92
Slideshare http://www.slideshare.net Document Sharing 39 / 1.00
Blogcatalog http://www.blogcatalog.com Blog 353 / 2.02
Craiglist http://www.craigslist.org Classified 96,443 / 5.00
Groupon http://www.groupon.com E-Commerce 73 / 1.75
Zynga http://zynga.com Social Gaming 5 / 2.00
Instagram http://instagram.com/ SNS / 9,519 /
Stackoverflow http://stackoverflow.com/ Q&A / 3,600 /

4.2. Effectiveness Study

In this section, we study the effectiveness of our proposed approach from
two different perspectives: 1) analysing the effectiveness of the proposed
features and rules in our approach; 2) evaluating the accuracy of the English
LOS and the Chinese one obtained by the proposed approach.
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Table 2: Statistics for 51 popular social Web sites in Chinese (MPA is short for mobile
phone assistant in the 2nd and 3rd row)

Site URL Type #Category #Tag Avg Depth
360 MPA http://sj.360.cn/ App Market 49 � 1.69
91 MPA http://zs.91.com/ App Market 76 � 1.55
Amazon http://www.amazon.cn/ E-commerce 3,310 � 3.65
Android Market http://apk.hiapk.com/ App Market 279 � 2.56
Apple App Store http://www.apple.com/cn/ App Markets 90 � 1.69
Baidu Baike http://baike.baidu.com/ Wiki 11,743 � 2.67
Baidu Tieba http://tieba.baidu.com/ BBS 213 � 1.57
Baidu Wenku http://wenku.baidu.com/ Document Sharing 298 � 1.87
Baidu Zhidao http://zhidao.baidu.com/ Q&A 2,117 � 3.24
BaiXing http://www.baixing.com/ Classified 55,179 � 4.08
DangDang http://www.dangdang.com/ E-commerce 6,847 � 2.59
DianDian http://www.diandian.com/ Light Blog � 8,105 �
DingDing Map http://www.ddmap.com/ Customer Review 26,993 � 2.50
Docin http://www.docin.com/ Document Sharing 734 � 1.60
Douban http://www.douban.com/ Social Network 13,168 � 4.04
FanTong http://www.fantong.com/ Customer Review 3,842 � 2.61
XianGuo http://xianguo.com/ RSS 36 � 1.62
GanJi http://www.ganji.com/ Classified 25,274 � 3.81
Guang http://guang.com/ Social E-commerce 293 � 2.61
Hudong Baike http://www.baike.com/ Wiki 32,293 � 5.72
JiangNanQingYuan http://www.88999.com/ Dating 153 � 2.02
ShiJiJiaYuan http://www.jiayuan.com/ Dating 77 � 1.83
JingDong http://www.jd.com/ E-commerce 31,140 � 3.59
KaiXing http://www.kaixin001.com/ Social Network 124 � 2.45
Lvping http://www.lvping.com/ Online Travel 40,475 � 3.57
MeiLiShuo http://www.meilishuo.com/ Social E-commerce 316 � 2.57
Mop http://www.mop.com/ BBS 22 � 1.55
PPS http://www.pps.tv/ Video Sharing 288 � 1.50
QieKe http://www.qieke.com/ LBS 6,224 � 3.51
QiongYou http://www.qyer.com/ Online Travel 107 7,400 1.68
RenHe http://www.renhe.cn/ Business Social Network 249 � 2.55
RenRen http://www.renren.com/ Social Network 118 � 1.98
RenRen Game http://wan.renren.com/ Social Gaming 43 � 1.70
RenRen XiaoZhan http://zhan.renren.com/ Light Blog � 7,038 �
RuoLin http://www.wealink.com/ Business Social Network 62 � 1.56
Sina iAsk http://iask.sina.com.cn/ Q&A 5,247 � 3.24
Sina Blog http://blog.sina.com.cn/ Blog 27 16,190 1.56
Sina Game http://games.sina.com.cn/ Social Gaming 52 � 1.67
Sina GongXiang http://ishare.sina.com.cn/ Document Sharing 234 � 1.57
Sina Micro Blog http://weibo.com/ Microblogging 183 � 2.66
TaoBao http://www.taobao.com/ E-commerce 1,843 � 3.34
Tencent Blog http://blog.qq.com/ Blog 23 � 1.65
Tencent Micro Blog http://t.qq.com/ Microblogging 15 � 1.00
TianYa http://www.tianya.cn/ BBS 1,706 � 3.18
Tudou http://www.tudou.com/ Video Sharing 755 � 1.64
TuiTa http://www.tuita.com/ Light Blog � 3,135 �
Netease Blog http://blog.163.com/ Blog 19 � 1.60
Netease Micro Blog http://t.163.com/ Microblogging � 29,737 �
Netease Reader http://yuedu.163.com/ RSS 46 � 1.83
Chinese Wikipedia http://zh.wikipedia.org/ Wiki 55,122 � 3.71
Youku http://www.youku.com/ Video Sharing 744 � 1.62

4.2.1. Feature and Rule Contribution Analysis

To analyse the effectiveness of the designed features and rules for
predicting semantic relations, we used two groups of the labeled data
automatically generated from Yago and BabelNet as the ground truth
(introduced in Section 3.2). One is for English and the other is for Chinese.
Each group contains 200 concept pairs labeled equal, 800 concept pairs
labeled subClassOf and 3,000 labeled relate. We applied three methods
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Table 3: Basic vs. Basic+Semantic vs. All (English)
Relation Method Precision Recall F-Measure

relate

Basic 0.865 0.883 0.874
Basic+Semantic 0.878 0.911 0.894
All 0.888 0.929 0.908

subClassOf

Basic 0.654 0.620 0.637
Basic+Semantic 0.806 0.710 0.755
All 0.910 0.750 0.822

equal

Basic 0.860 0.770 0.813
Basic+Semantic 0.907 0.806 0.864
All 0.930 0.935 0.932

Table 4: Basic vs. Basic+Semantic vs. All (Chinese)
Relation Method Precision Recall F-Measure

relate

Basic 0.832 0.876 0.853
Basic+Semantic 0.836 0.886 0.860
All 0.882 0.922 0.902

subClassOf

Basic 0.711 0.590 0.645
Basic+Semantic 0.769 0.623 0.688
All 0.879 0.724 0.794

equal

Basic 0.876 0.775 0.822
Basic+Semantic 0.914 0.795 0.850
All 0.922 0.940 0.931

based on different combinations of features and rules for each language.
The first method (denoted as Basic) used a SVM classifier with only
basic features, i.e. the lexical feature and the Wikipedia-based feature.
The second method (i.e. Basic+Semantic) utilized a SVM classifier with
not only basic features, but also semantic features including BabelNet-
based features and Web page based features. The third method (All, i.e.
Basic+Semantic+Rule) used the second classifier and the rules proposed in
the post processing step.

We applied 5-fold cross validation to train the classifiers. Precision, recall,
and F-measure are evaluation metrics. As shown in Table 3 and Table 4, the
method using the classifier with all features and rules performs best no matter
in English or Chinese labeled data. This reflects that our proposed features
and rules are quite effective in predicting English and Chinese semantic
relations. We can also find that the methods considering rules improve the
performance greatly, which indicates the necessity of the simple and general
rules in the post-processing step.
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4.2.2. Accuracy of Three Semantic Relations in LOS

We ran the proposed iterative semi-supervised learning approach with
all features and rules until convergence to build an English LOS and a
Chinese LOS, respectively. The English LOS contains 25,474 equal relations,
1,047,801 subClassOf relations and 1,327,631 relate relations. The Chinese
LOS contains 11,095 equal relations, 947,645 subClassOf relations and
217,881 relate relations. Since there are no ground truths available, we
have to verify these relations manually. Due to the large number of semantic
relations, it is impossible to evaluate all of them manually. Therefore, we first
randomly selected a subset of relations (called samples) which can reflect the
distribution of the whole dataset, and then we performed manual labeling to
evaluate the correctness of samples. The accuracy assessment on samples are
used to approximate the correctness of the English LOS and Chinese LOS.

Four graduate students participated in the labeling process. We provided
them three choices namely agree, disagree and unknown to label each sample.
After each student labeled all samples, we computed the average accuracy.
Finally, similar to Yago, the Wilson interval [28] at α = 5% was used
to generalize our findings on the subset to the whole dataset. Wilson
interval [28] is a kind of binomial proportion confidence interval for the
probability of success calculated from the outcome of a series of Bernoulli
trials. Wilson interval has shown good accuracy even for a small number of
trials [28], and here α is the significance level.

After applying the above evaluation strategy on the English LOS, the
results are as follows:

• We randomly selected 500 equal relations. After labeling, the average
number of agree votes is 483, and the precision achieves 96.24%±1.62%.

• For the randomly selected 500 relate relations, the average number of
agree votes is 448, and the precision is 89.29%± 2.68%.

• We also randomly selected 500 subClassOf relations. After labeling,
the average number of agree votes is 427, and the precision achieves
85.13%± 3.09%.

The similar evaluation strategy is applied to the Chinese LOS, and we
got the following results.

• We randomly selected 500 equal relations. After labeling, the average
number of agree votes is 474, and the precision achieves 94.45%±1.96%.
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Figure 4: An example of generating concept pair patterns for subClassOf relations

• For the randomly selected 500 relate relations, the average number of
agree votes is 461, and the precision is 91.87%± 2.36%.

• We also randomly selected 500 subClassOf relations. After labeling,
the average number of agree votes is 440, and the precision achieves
87.71%± 2.85%.

4.3. Data Distribution of LOS

Each concept pair may be composed of two categories (denoted as
category+category), or a category and a tag (denoted as category+tag),
or two tags (denoted as tag+tag). For an asymmetric subClassOf relation
between a category and a tag, we used tag+category to represent that a tag
is a sub-concept of a category while category+tag to denote that a category
is a sub-concept of a tag. Figure 4 gives an example of different concept pair
patterns for the given subClassOf relations. Table 5 and Table 6 respectively
show the concept pair pattern distribution in the three types of English and
Chinese semantic relations. From these two tables, it is unsurprising that
category+category contributes to the largest proportion (more than 0.56)
of relations for any kind of semantic relations in both languages, because the
number of categories we collected is much larger than the number of tags
and categories has better semantic stability compared with tags. Meanwhile,
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Table 5: Concept pair pattern distribution in English semantic relations

Concept Pair Pattern equal subClassOf relate

category+category 0.564 0.755 0.909

category+tag 0.373 0.141 0.071

tag+category � 0.080 �
tag+tag 0.063 0.024 0.020

Table 6: Concept pair pattern distribution in Chinese semantic relations

Concept Pair Pattern equal subClassOf relate

category+category 0.769 0.865 0.883

category+tag 0.201 0.086 0.102

tag+category � 0.041 �
tag+tag 0.030 0.008 0.015

the relatively small number of tags can also contribute lots of semantic
relations, which do complement the schema-level knowledge only existing
among categories.

As shown in Figure 5(a) (i.e. in the English LOS), 88.60% categories
and 42.11% tags appear in subClassOf relations, 36.62% categories and
21.69% tags contribute to relate relations, and 3.70% categories and
2.30% tags are for equal relations. In Figure 5(b) (i.e. in the Chinese
LOS), 72.61% categories and 22.81% tags appear in subClassOf relations,
20.80% categories and 10.19% tags contribute to relate relations, and 5.58%
categories and 2.63% tags are for equal relations. The high proportion of
subClassOf relations among categories (or tags) enables the English LOS
or the Chinese LOS to form a large concept taxonomy. The ratio of equal

relations is pretty low because it is the most strict semantic relation and thus
the concept pairs in the same block seldom satisfy such relation.

We also checked the number of subClassOf relations already defined in
some existing category hierarchies. As shown in Figure 6(a) and Figure 6(b),
the proportion of existing English and Chinese subClassOf relations are
respectively 36.62% and 22.71%. 15.13% English subClassOf relations and
22.44% Chinese subClassOf relations can be inferred from the existing
category hierarchies via intermediate paths. Notice that 48.25% English
subClassOf relations and 52.85% Chinese subClassOf relations are newly
discovered, which shows the value of the English LOS and Chinese LOS.
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Figure 5: English and Chinese semantic relation proportions
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Figure 6: English and Chinese subClassOf relation distributions

4.4. Comparison with Other Datasets

4.4.1. Overlap of Concepts and subClassOf Relations

We compared the English LOS and Chinese LOS with other well-known
multilingual datasets in LOD, namely DBpedia8, Yago9, BabelNet10 and
Freebase11 in terms of concepts and subClassOf relations. Table 7 and
Table 8 show the information of concepts and subClassOf relations of each
dataset in English and Chinese, respectively. They also list the concept
overlap and subClassOf relation overlap between the English (or Chinese)
LOS and the other datasets. As for the concept number, the Chinese LOS is

8http://dbpedia.org/About
9http://www.mpi-inf.mpg.de/yago-naga/yago/

10http://babelnet.org/
11https://www.freebase.com/
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Table 7: Overlap between the English LOS and other datasets
English LOS DBpedia Yago BabelNet Freebase

Concept Number 242,303 1,213,462 408,467 1,042,196 133,075
Concept Overlap � 102,083 47,814 46,034 8,003

subClassOf relation Number 1,047,801 684 458,242 89,074 23,878
subClassOf relation Overlap � 40 53,168 10,759 70

Table 8: Overlap between the Chinese LOS and other datasets
Chinese LOS DBpedia Yago BabelNet Freebase

Concept Number 399,853 142,411 48,621 463,485 2,035
Concept Overlap � 86,981 24,200 33,714 447

subClassOf relation Number 947,645 3 40,937 57,407 1,092
subClassOf relation Overlap � 2 8,608 2,612 36

larger than DBpedia, Yago and Freebase, and the English LOS is only larger
than Freebase. The concept overlap between the English (or Chinese) LOS
and other datasets is small, which shows that there may exist many new
concepts in social Web sites and they are good supplements to these existing
knowledge bases.

Regarding subClassOf relations, both of the English LOS and the
Chinese one contain the largest number (at least more than twice as large
as the number of subClassOf relations in other datasets). When looking
at the subClassOf relation overlap, we find only small overlaps between the
English (or Chinese) LOS and other datasets. Thus, combining the English
LOS and the Chinese one with these datasets could form a larger linked open
schema.

4.4.2. Overlap of equal Relations with BabelNet

The English LOS contains 25,474 equal relations where 14,849 of them
represent the same meaning with different labels. The Chinese LOS contains
11,095 equal relations where 2,139 of them are of different labels. Since
BabelNet is the largest multilingual synonym thesaurus in current LOD,
we would like to check how many extracted equal relations are covered by
BabelNet. For each concept in BabelNet, it is organized in form of a synset
in which there are synonyms representing the same concept in different labels
or languages. Here, we did not count a equal relation when concepts in a
pair have the same string. In this way, we get 10,160 English equal relations
and 1,013 Chinese equal relations covered by BabelNet. Due to the small
overlap of equal relations, how to complement equal relations in the English
LOS and the Chinese one leveraging BabelNet is worthy to study in the
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future. Additionally, we also checked the number of synonymous concept
labels between the English LOS and the Chinese one using the multilingual
synsets of BabelNet. The number of bilingual synonymous concept labels is
23,204, a small proportion of the concepts in English or Chinese LOS, which
indicates that there may exist much room for us to mine the emerging cross-
lingual equal relations hidden in these concepts within social Web sites.

5. Web Access to Linked Open Schema

Besides publishing the data dump of the English LOS and the Chinese
one as open data for public access, we also provide users with two ways for
querying, i.e. Lookup Service and SPARQL Endpoint.

5.1. Linked Data

According to the Linked Data principles12, LOS creates IRIs for all cate-
gories and provides sufficient information when someone looks up an IRI by
the HTTP protocol. Since LOS contains concepts of different languages from
different sites, we design an IRI pattern to indicate what the language of a
concept is, where it comes from and whether it is a category or a tag. The pat-
tern http://los.linkingopenschema.info/[language]/[site]/[concept
type]/[label] has five parts. http://los.linkingopenschema.info/ is
the namespace. The second part gives the language information of the
concept. If it is English (Chinese), the second part is EN (ZH). The third
part tells the provenance of the concept. If it is a tag, the fourth part is
dynamic. Otherwise, it is static. The last part is the concept label.

When publishing LOS, we follow the best practice recipes [29] and try to
reuse existing RDF vocabularies which have clear semantics and are widely
used. Particularly, we use rdfs:subClassOf for subClassOf relations,
skos:related for relate relations and owl:equivalentClass for equal re-
lations. When the Semantic Web agents that accept “application/rdf+xml”
content type access our server, resource descriptions in the RDF format will
be returned.

5.2. Lookup Service

Lookup Service is provided for users to access LOS. The service is available
at http://los.linkingopenschema.info/LookUp.jsp. Given a query, all

12http://www.w3.org/DesignIssues/LinkedData.html
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Figure 7: An example page of integrated concepts

concepts whose labels exactly match the query are returned. If two categories
are equal, they are automatically merged as an integrated view for browsing.

If a user searches for a Chinese concept “Àyå” (water purifier), as
shown in Figure 7, we return a page integrating two equivalent concepts
from two e-commerce Web sites (i.e. JingDong13 and DangDang14).
From the page, we can see provenances of two concepts, other equivalent
concepts with different labels, their parent concepts, child concepts, related
concepts, and links to their original pages in Web sites. These information
are organized in the Resource Site Label, EqualClass, SuperClass,
SubClass, RelatedClass and Link sections respectively.

We can click on any parent concept or child concept to switch to another
page view. Such an interaction stands for navigation in the integrated
concept taxonomy of the English (or Chinese) LOS. A click on one related
concept or an equivalent concept corresponds to traversal on the semantic
network of the English or Chinese LOS.

5.3. SPARQL Endpoint

SPARQL Endpoint is also provided for querying LOS. Professional users
can submit customized queries at http://los.linkingopenschema.info/

13https://www.jd.com/
14http://www.dangdang.com/
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SPARQL.jsp. We use AllegroGraph RDFStore15 as the backend triple store.

6. Related Work

There are two lines of research related to this work. They are ontology
learning and ontology alignment, which will be discussed in details respec-
tively.

6.1. Ontology Learning

Ontology learning, especially taxonomic knowledge learning has aroused
extensive attention from the research community. Taxonomic knowledge
learning can be encyclopedic-based or Web-based. For the encyclopedic-
based approaches, they mainly focus on extracting concept hierarchies from
Wikipedia. WikiTaxonomy [30] builds a taxonomy from the Wikipedia
category system. It contains 105,000 subclassOf relations with the accuracy
of 88%. Kylin Ontology Generator (KOG) [31] uses Markov Logic Network
(MLN) to predict subsumption relations between Wikipedia infobox classes.
Yago [8] interlinks Wikipedia categories to WordNet synsets. The integrated
taxonomy contains WordNet synsets as hypernyms and Wikipedia categories
as hyponyms. There are over 350,000 classes and 450,000 subClassOf

relations in Yago and the accuracy is estimated to be 96%.
Regarding Web-based approaches, Hearst patterns [32] are widely used.

The most recent effort is Microsoft Concept Graph [33, 34]. It builds a
large-scale taxonomy which contains over 5 million concepts and 80 million
IsA relations, but does not distinguish between subClassOf relations and
instanceOf relations. Mianwei Zhou et al. [35] introduced an unsupervised
model to automatically derive hierarchical semantics from social annotations.
Jie Tang et al. [36] proposed a learning approach to capture the hierarchical
semantic structure of folksonomies which are collections of user-defined
tags. Huairen Lin et al. [37] described an integrated method for extracting
ontological structure from folksonomies that exploits the power of low
support association rule mining supplemented by an upper ontology such
as WordNet. A recent survey paper [38] compares different approaches of
discovering semantics of tags. The main focus of these approaches is to
capture the hierarchical semantic structure of folksonomies.

15http://www.franz.com/agraph/allegrograph/
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Our approach is more similar to the Web-based approaches because we
detect three types of semantic relations among categories and tags collected
from various social Web sites (not limited to Wikipedia only). Furthermore,
compared with previous works, we put an emphasis on mining semantic
relations between concepts (including categories and tags) and designing
a general approach incorporating different features and rules for semi-
supervised learning.

6.2. Ontology Alignment

Ontology alignment is very active in the Semantic Web community as
well as the database field. In recent years, many alignment tools [39]
have been developed. We will introduce some representative examples as
follows. Falcon-AO [40] is an automatic ontology matching system leveraging
linguistic matching (called LMO) and graph matching (called GMO) to
generate reliable alignments between heterogeneous ontologies. However,
Falcon-AO only finds equivalence relations. So it cannot be used to tackle
our problem. BLOOMS [41] is another ontology alignment tool relying on
an external knowledge base such as WordNet or Wikipedia to construct a
BLOOMS forest for every class in an ontology. After that, it defines a
function to compute the overlap of each tree pair in the two BLOOMS
forests. Based on the rate of overlap, BLOOMS determines whether an
alignment should be added. Supposing that we use BLOOMS in our scenario,
if Wikipedia is used as the knowledge base, when dealing with a large number
of concept pairs, BLOOMS will invoke too many calls to Wikipedia, which
causes unaffordable time cost. If WordNet is used, too few concepts from
different social sites can be aligned because BLOOMS treats each concept
label as a whole without analyzing its structure. PARIS [42] aligns not only
classes but also relations and instances, it measures the degree of matching
based on probability estimates and runs without any parameter tuning. It
is noticed that Paris aligns classes based on instance matching, so it will fail
in our scenario since we only have concepts without any instances.

In this work, we need to deal with the categories within existing
taxonomies and tags without explicit structure, so it is hard to directly
use existing ontology alignment tools to learn semantic relations among
categories and tags.
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7. Conclusions and Future Work

In this paper, we built and published the English linked open schema
(LOS) and the Chinese one. We applied a new general semi-supervised
learning method integrating rules to the categories and tags collected from
different popular English and Chinese social Web sites to detect equal,
subClassOf, and relate relations among them. Overall, our proposed
approach can be generalized to any language. The semi-supervised learning
method and rules are language-independent, but generating the lexical heads
used in rules depends on different linguistic characteristics of languages. To
transfer our approach to another language, we only need to extract the lexical
heads of the categories (or tags) according to the grammar and syntax of that
language, and all other parts are the same in any language. The experiments
show not only the effectiveness of our proposed approach, but also the high
quality of LOS. We also provided several mechanisms for users to access LOS,
including the data dump, lookup service and SPARQL endpoint.

As for the future work, in order to avoid the data in LOS becoming
outdated, we will update LOS by continuous crawling the most popular social
Web sites, and implement new algorithms of semantic relation detection to
support incremental updates. We also plan to extract categories and tags
from the social Web sites in other languages (e.g. Japanese, Germany and
French) to contribute multilingual LOS. Moreover, we will try to mine cross-
lingual equal relations between concepts in different languages to build a
global LOS.
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